147 research outputs found

    Active Versus Passive: Receiver Model Transforms for Diffusive Molecular Communication

    Get PDF
    This paper presents an analytical comparison of active and passive receiver models in diffusive molecular communication. In the active model, molecules are absorbed when they collide with the receiver surface. In the passive model, the receiver is a virtual boundary that does not affect molecule behavior. Two approaches are presented to derive transforms between the receiver signals. As an example, two models for an unbounded diffusion-only molecular communication system with a spherical receiver are unified. As time increases in the three-dimensional system, the transform functions have constant scaling factors, such that the receiver models are effectively equivalent. Methods are presented to enable the transformation of stochastic simulations, which are used to verify the transforms and demonstrate that transforming the simulation of a passive receiver can be more efficient and more accurate than the direct simulation of an absorbing receiver.Comment: 6 pages, 3 figures, 3 tables. Will be presented at IEEE Globecom 201

    Cooperative Deep Reinforcement Learning for Multiple-Group NB-IoT Networks Optimization

    Full text link
    NarrowBand-Internet of Things (NB-IoT) is an emerging cellular-based technology that offers a range of flexible configurations for massive IoT radio access from groups of devices with heterogeneous requirements. A configuration specifies the amount of radio resources allocated to each group of devices for random access and for data transmission. Assuming no knowledge of the traffic statistics, the problem is to determine, in an online fashion at each Transmission Time Interval (TTI), the configurations that maximizes the long-term average number of IoT devices that are able to both access and deliver data. Given the complexity of optimal algorithms, a Cooperative Multi-Agent Deep Neural Network based Q-learning (CMA-DQN) approach is developed, whereby each DQN agent independently control a configuration variable for each group. The DQN agents are cooperatively trained in the same environment based on feedback regarding transmission outcomes. CMA-DQN is seen to considerably outperform conventional heuristic approaches based on load estimation.Comment: Submitted for conference publicatio

    Deep Reinforcement Learning for Real-Time Optimization in NB-IoT Networks

    Get PDF
    NarrowBand-Internet of Things (NB-IoT) is an emerging cellular-based technology that offers a range of flexible configurations for massive IoT radio access from groups of devices with heterogeneous requirements. A configuration specifies the amount of radio resource allocated to each group of devices for random access and for data transmission. Assuming no knowledge of the traffic statistics, there exists an important challenge in "how to determine the configuration that maximizes the long-term average number of served IoT devices at each Transmission Time Interval (TTI) in an online fashion". Given the complexity of searching for optimal configuration, we first develop real-time configuration selection based on the tabular Q-learning (tabular-Q), the Linear Approximation based Q-learning (LA-Q), and the Deep Neural Network based Q-learning (DQN) in the single-parameter single-group scenario. Our results show that the proposed reinforcement learning based approaches considerably outperform the conventional heuristic approaches based on load estimation (LE-URC) in terms of the number of served IoT devices. This result also indicates that LA-Q and DQN can be good alternatives for tabular-Q to achieve almost the same performance with much less training time. We further advance LA-Q and DQN via Actions Aggregation (AA-LA-Q and AA-DQN) and via Cooperative Multi-Agent learning (CMA-DQN) for the multi-parameter multi-group scenario, thereby solve the problem that Q-learning agents do not converge in high-dimensional configurations. In this scenario, the superiority of the proposed Q-learning approaches over the conventional LE-URC approach significantly improves with the increase of configuration dimensions, and the CMA-DQN approach outperforms the other approaches in both throughput and training efficiency

    Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver

    Get PDF
    In this paper, we present an analytical model for the diffusive molecular communication (MC) system with a reversible adsorption receiver in a fluid environment. The widely used concentration shift keying (CSK) is considered for modulation. The time-varying spatial distribution of the information molecules under the reversible adsorption and desorption reaction at the surface of a receiver is analytically characterized. Based on the spatial distribution, we derive the net number of newly-adsorbed information molecules expected in any time duration. We further derive the number of newly-adsorbed molecules expected at the steady state to demonstrate the equilibrium concentration. Given the number of newly-adsorbed information molecules, the bit error probability of the proposed MC system is analytically approximated. Importantly, we present a simulation framework for the proposed model that accounts for the diffusion and reversible reaction. Simulation results show the accuracy of our derived expressions, and demonstrate the positive effect of the adsorption rate and the negative effect of the desorption rate on the error probability of reversible adsorption receiver with last transmit bit-1. Moreover, our analytical results simplify to the special cases of a full adsorption receiver and a partial adsorption receiver, both of which do not include desorption.Comment: 14 pages, 8 figures, 1 algorithm, submitte

    Joint Spatial and Spectrum Cooperation in Wireless Network.

    Get PDF
    PhDThe sky-rocketing growth of multimedia infotainment applications and broadband-hungry mobile devices exacerbate the stringent demand for ultra high data rate and more spectrum resources. Along with it, the unbalanced temporal and geographical variations of spectrum usage further inspires those spectral-efficient networks, namely, cognitive radio and heterogeneous cellular networks (HCNs). This thesis focuses on the system design and performance enhancement of cognitive radio (CR) and HCNs. Three different aspects of performance improvement are considered, including link reliability of cognitive radio networks (CNs), security enhancement of CNs, and energy efficiency improvement of CNs and HCNs. First, generalized selection combining (GSC) is proposed as an effective receiver design for interference reduction and reliability improvement of CNs with outdated CSI. A uni- ed way for deriving the distribution of received signal-to-noise ratio (SNR) is developed in underlay spectrum sharing networks subject to interference from the primary trans- mitter (PU-Tx) to the secondary receiver (SU-Rx), maximum transmit power constraint at the secondary transmitter (SU-Tx), and peak interference power constraint at the PU receiver (PU-Rx), is developed. Second, transmit antenna selection with receive generalized selection combining (TAS/GSC) in multi-antenna relay-aided communica- tion is introduced in CNs under Rayleigh fading and Nakagami-m fading. Based on newly derived complex statistical properties of channel power gain of TAS/GSC, exact ergodic capacity and high SNR ergodic capacity are derived over Nakagami-m fading. Third, beamforming and arti cial noise generation (BF&AN) is introduced as a robust scheme to enhance the secure transmission of large-scale spectrum sharing networks with multiple randomly located eavesdroppers (Eves) modeled as homogeneous Poisson Point Process (PPP). Stochastic geometry is applied to model and analyze the impact of i BF&AN on this complex network. Optimal power allocation factor for BF&AN which maximizes the average secrecy rate is further studied under the outage probability con- straint of primary network. Fourth, a new wireless energy harvesting protocol is proposed for underlay cognitive relay networks with the energy-constrained SU-Txs. Exact and asymptotic outage probability, delay-sensitive throughput, and delay-tolerant through- put are derived to explore the tradeoff between the energy harvested from the PU-Txs and the interference caused by the PU-Txs. Fifth, a harvest-then-transmit protocol is proposed in K-tier HCNs with randomly located multiple-antenna base stations (BSs) and single antenna mobile terminals (MTs) modeled as homogeneous PPP. The average received power at MT, the uplink (UL) outage probability, and the UL average ergodic rate are derived to demonstrate the intrinsic relationship between the energy harvested from BSs in the downlink (DL) and the MT performance in the UL. Throughout the thesis, it is shown that link reliability, secrecy performance, and energy efficiency of CNs and HCNs can be signi cantly leveraged by taking advantage of multiple antennas, relays, and wireless energy harvesting

    CSK Realization for MC via Spatially Distributed Multicellular Consortia

    Full text link
    The design and engineering of molecular communication (MC) components capable of processing chemical concentration signals is the key to unleashing the potential of MC for interdisciplinary applications. By controlling the signaling pathway and molecule exchange between cell devices, synthetic biology provides the MC community with tools and techniques to achieve various signal processing functions. In this paper, we propose a design framework to realize any order concentration shift keying (CSK) systems based on simple and reusable single-input single-output cells. The design framework also exploits the distributed multicellular consortia with spatial segregation, which has advantages in system scalability, low genetic manipulation, and signal orthogonality. We also create a small library of reusable engineered cells and apply them to implement binary CSK (BCSK) and quadruple CSK (QCSK) systems to demonstrate the feasibility of our proposed design framework. Importantly, we establish a mathematical framework to theoretically characterize our proposed distributed multicellular systems. Specially, we divide a system into fundamental building blocks, from which we derive the impulse response of each block and the cascade of the impulse responses leads to the end-to-end response of the system. Simulation results obtained from the agent-based simulator BSim not only validate our CSK design framework but also demonstrate the accuracy of the proposed mathematical analysis.Comment: 30 pages, 13 figure
    • …
    corecore